Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820064

RESUMO

BACKGROUND AND AIMS: Although the benefits of vertical sleeve gastrectomy (VSG) surgery are well known, the molecular mechanisms by which VSG alleviates obesity and its complications remain unclear. We aim to determine the role of CYP8B1 (cytochrome P450, family 8, subfamily B, polypeptide 1) in mediating the metabolic benefits of VSG. APPROACH AND RESULTS: We found that expression of CYP8B1, a key enzyme in controlling the 12α-hydroxylated (12α-OH) bile acid (BA) to non-12α-OH BA ratio, was strongly downregulated after VSG. Using genetic mouse models of CYP8B1 overexpression, knockdown, and knockout, we demonstrated that overexpression of CYP8B1 dampened the metabolic improvements associated with VSG. In contrast, short hairpin RNA-mediated CYP8B1 knockdown improved metabolism similar to those observed after VSG. Cyp8b1 deficiency diminished the metabolic effects of VSG. Further, VSG-induced alterations to the 12α-OH/non-12α-OH BA ratio in the BA pool depended on CYP8B1 expression level. Consequently, intestinal lipid absorption was restricted, and the gut microbiota (GM) profile was altered. Fecal microbiota transplantation from wild type-VSG mice (vs. fecal microbiota transplantation from wild-type-sham mice) improved metabolism in recipient mice, while there were no differences between mice that received fecal microbiota transplantation from knockout-sham and knockout-VSG mice. CONCLUSIONS: CYP8B1 is a critical downstream target of VSG. Modulation of BA composition and gut microbiota profile by targeting CYP8B1 may provide novel insight into the development of therapies that noninvasively mimic bariatric surgery to treat obesity and its complications.

2.
Nat Commun ; 14(1): 4464, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491425
3.
Mol Nutr Food Res ; 67(17): e2200722, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366318

RESUMO

SCOPE: Perinatal high-fat diets (PHF) can influence fetal/neonate development, resulting in cardiovascular pathogenesis, but precise mechanisms remain unclear. This study tests aldosterone receptor-mediated Ca2+ influx and the underlying mechanisms influenced by PHF. METHODS AND RESULTS: Maternal S.D. rats receive PHF during pregnancy and lactation periods. Their male offspring are fed normal diets after weaning for four months. Mesenteric arteries (MA) are for electrophysiological testing, Ca2+ imaging, target gene expression, and promotor methylation. PHF increases aldosterone receptor gene Nr3c2-mediated Ca2+ currents in the smooth muscle cells (SMCs) of the MA via L-type Ca2+ channels (LTCC) in the offspring. The increased expression of aldosterone-receptors and LTCC are responsible for an activated Nr3c2-LTCC pathway in the vasculature, eventually predisposes an increase of Ca2+ influx in the myocytes of resistance arteries. The inhibitor of aldosterone-receptors suppresses the increased Ca2+ currents in the SMCs. Nr3c2 and LTCC are upregulated through the transcriptional mechanism in methylation, which can be reversed in the functional changes by methylation inhibitor 5AZA. CONCLUSION: The results firstly demonstrate that aldosterone-receptor activation can stimulate Ca2+ currents via LTCC in vascular myocytes, which can be altered by perinatal foods via epigenetic changes of DNA methylation in the promoters of Nr3c2 and LTCC.


Assuntos
Aldosterona , Receptores de Mineralocorticoides , Gravidez , Feminino , Ratos , Masculino , Animais , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/farmacologia , Aldosterona/metabolismo , Artérias Mesentéricas/fisiologia , Metilação de DNA , Dieta , Miócitos de Músculo Liso/metabolismo
4.
Commun Biol ; 6(1): 105, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707678

RESUMO

Long non-coding RNAs (lncRNAs) are emerging important epigenetic regulators in metabolic processes. Whether they contribute to the metabolic effects of vertical sleeve gastrectomy (VSG), one of the most effective treatments for sustainable weight loss and metabolic improvement, is unknown. Herein, we identify a hepatic lncRNA Gm19619, which is strongly repressed by VSG but highly up-regulated by diet-induced obesity and overnight-fasting in mice. Forced transcription of Gm19619 in the mouse liver significantly promotes hepatic gluconeogenesis with the elevated expression of G6pc and Pck1. In contrast, AAV-CasRx mediated knockdown of Gm19619 in high-fat diet-fed mice significantly improves hepatic glucose and lipid metabolism. Mechanistically, Gm19619 is enriched along genomic regions encoding leptin receptor (Lepr) and transcription factor Foxo1, as revealed in chromatin isolation by RNA purification (ChIRP) assay and is confirmed to modulate their transcription in the mouse liver. In conclusion, Gm19619 may enhance gluconeogenesis and lipid accumulation in the liver.


Assuntos
Lipogênese , RNA Longo não Codificante , Animais , Camundongos , Dieta Hiperlipídica , Regulação para Baixo , Gastrectomia , Gluconeogênese/genética , Lipogênese/genética , Fígado/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
6.
Nat Commun ; 13(1): 2835, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595767

RESUMO

Cyclin-dependent kinase 2 (CDK2) complex is significantly over-activated in many cancers. While it makes CDK2 an attractive target for cancer therapy, most inhibitors against CDK2 are ATP competitors that are either nonspecific or highly toxic, and typically fail clinical trials. One alternative approach is to develop non-ATP competitive inhibitors; they disrupt interactions between CDK2 and either its partners or substrates, resulting in specific inhibition of CDK2 activities. In this report, we identify two potential druggable pockets located in the protein-protein interaction interface (PPI) between CDK2 and Cyclin A. To target the potential druggable pockets, we perform a LIVS in silico screening of a library containing 1925 FDA approved drugs. Using this approach, homoharringtonine (HHT) shows high affinity to the PPI and strongly disrupts the interaction between CDK2 and cyclins. Further, we demonstrate that HHT induces autophagic degradation of the CDK2 protein via tripartite motif 21 (Trim21) in cancer cells, which is confirmed in a leukemia mouse model and in human primary leukemia cells. These results thus identify an autophagic degradation mechanism of CDK2 protein and provide a potential avenue towards treating CDK2-dependent cancers.


Assuntos
Autofagia , Quinases relacionadas a CDC2 e CDC28 , Ciclina A , Quinase 2 Dependente de Ciclina , Leucemia , Animais , Linhagem Celular Tumoral/metabolismo , Ciclina A/antagonistas & inibidores , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Mepesuccinato de Omacetaxina/metabolismo , Mepesuccinato de Omacetaxina/farmacologia , Humanos , Camundongos , Ribonucleoproteínas
7.
Nat Commun ; 13(1): 1135, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241650

RESUMO

The energy-dissipating capacity of brown adipose tissue through thermogenesis can be targeted to improve energy balance. Mammalian 5'-AMP-activated protein kinase, a key nutrient sensor for maintaining cellular energy status, is a known therapeutic target in Type II diabetes. Despite its well-established roles in regulating glucose metabolism in various tissues, the functions of AMPK in the intestine remain largely unexplored. Here we show that AMPKα1 deficiency in the intestine results in weight gain and impaired glucose tolerance under high fat diet feeding, while metformin administration fails to ameliorate these metabolic disorders in intestinal AMPKα1 knockout mice. Further, AMPKα1 in the intestine communicates with brown adipose tissue to promote thermogenesis. Mechanistically, we uncover a link between intestinal AMPKα1 activation and BAT thermogenic regulation through modulating anti-microbial peptide-controlled gut microbiota and the metabolites. Our findings identify AMPKα1-mediated mechanisms of intestine-BAT communication that may partially underlie the therapeutic effects of metformin.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Microbioma Gastrointestinal/fisiologia , Intestinos , Mamíferos/metabolismo , Metformina/farmacologia , Camundongos , Termogênese/fisiologia
8.
Cell Mol Gastroenterol Hepatol ; 13(3): 809-826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34896286

RESUMO

BACKGROUND & AIMS: Alcohol-associated liver disease (AALD) is one of the most common causes of liver injury and failure. Limited knowledge of the mechanisms underlying AALD impedes the development of efficacious therapies. Bile acid (BA) signaling was shown to participate in the progression of AALD. However, the mechanisms remain poorly understood. METHODS: C57BL/6J wild-type (WT), Takeda G-protein-coupled bile acid receptor 5 (TGR5) knockout (KO) and brown adipose tissue (BAT)-specific TGR5 knockdown mice were subjected to ethanol feeding-induced AALD. Liver samples from alcoholic hepatitis patients were used to examine the BA circulation signaling. Human Embryonic Kidney Cells 293 were used for the TGR5 reporter assay. 23(S)-methyl-lithocholic acid was used as a molecular tool to confirm the regulatory functions of BAT in the AALD mouse model. RESULTS: Ethanol feeding increased the expression of the thermogenesis genes downstream of TGR5 in BAT of WT, but not TGR5 KO, mice. TGR5 deficiency significantly blocked BAT activity and energy expenditure in mice after ethanol feeding. Alcohol increased serum BA levels in mice and human beings through altering BA transportation, and the altered BAs activated TGR5 signaling to regulate metabolism. Compared with ethanol-fed WT mice, ethanol-fed TGR5 KO mice showed less free fatty acid (FFA) ß-oxidation in BAT, leading to higher levels of FFA in the circulation, increased liver uptake of FFAs, and exacerbated AALD. BAT-specific TGR5 knockdown mice showed similar results with TGR5 KO mice in AALD. Agonist treatment significantly activated TGR5 signaling in BAT, increased thermogenesis, reduced serum FFA level, and ameliorated hepatic steatosis and injury in AALD mice, while these effects were lost in TGR5 KO mice. CONCLUSIONS: BA signaling plays a protective role in AALD by enhancing BAT thermogenesis. Targeting TGR5 in BAT may be a promising approach for the treatment of AALD.


Assuntos
Tecido Adiposo Marrom , Ácidos e Sais Biliares , Animais , Ácidos e Sais Biliares/metabolismo , Etanol/toxicidade , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Acta Pharm Sin B ; 11(6): 1541-1554, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34221867

RESUMO

Obesity and its associated complications are highly related to a current public health crisis around the world. A growing body of evidence has indicated that G-protein coupled bile acid (BA) receptor TGR5 (also known as Gpbar-1) is a potential drug target to treat obesity and associated metabolic disorders. We have identified notoginsenoside Ft1 (Ft1) from Panax notoginseng as an agonist of TGR5 in vitro. However, the pharmacological effects of Ft1 on diet-induced obese (DIO) mice and the underlying mechanisms are still elusive. Here we show that Ft1 (100 mg/100 diet) increased adipose lipolysis, promoted fat browning in inguinal adipose tissue and induced glucagon-like peptide-1 (GLP-1) secretion in the ileum of wild type but not Tgr5 -/- obese mice. In addition, Ft1 elevated serum free and taurine-conjugated bile acids (BAs) by antagonizing Fxr transcriptional activities in the ileum to activate Tgr5 in the adipose tissues. The metabolic benefits of Ft1 were abolished in Cyp27a1 -/- mice which have much lower BA levels. These results identify Ft1 as a single compound with opposite activities on two key BA receptors to alleviate high fat diet-induced obesity and insulin resistance in mice.

10.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526687

RESUMO

Vertical sleeve gastrectomy (VSG) is one of the most effective and durable therapies for morbid obesity and its related complications. Although bile acids (BAs) have been implicated as downstream mediators of VSG, the specific mechanisms through which BA changes contribute to the metabolic effects of VSG remain poorly understood. Here, we confirm that high fat diet-fed global farnesoid X receptor (Fxr) knockout mice are resistant to the beneficial metabolic effects of VSG. However, the beneficial effects of VSG were retained in high fat diet-fed intestine- or liver-specific Fxr knockouts, and VSG did not result in Fxr activation in the liver or intestine of control mice. Instead, VSG decreased expression of positive hepatic Fxr target genes, including the bile salt export pump (Bsep) that delivers BAs to the biliary pathway. This reduced small intestine BA levels in mice, leading to lower intestinal fat absorption. These findings were verified in sterol 27-hydroxylase (Cyp27a1) knockout mice, which exhibited low intestinal BAs and fat absorption and did not show metabolic improvements following VSG. In addition, restoring small intestinal BA levels by dietary supplementation with taurocholic acid (TCA) partially blocked the beneficial effects of VSG. Altogether, these findings suggest that reductions in intestinal BAs and lipid absorption contribute to the metabolic benefits of VSG.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Gastrectomia/métodos , Obesidade Mórbida/cirurgia , Receptores Citoplasmáticos e Nucleares/genética , Animais , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Redução de Peso/genética
11.
Handb Exp Pharmacol ; 256: 359-378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31144046

RESUMO

Bariatric surgical procedures, including Roux-en-Y gastric bypass and vertical sleeve gastrectomy, are currently the most effective clinical approaches to achieve a significant and sustainable weight loss. Bariatric surgery also concomitantly improves type 2 diabetes and other metabolic diseases such as nonalcoholic steatohepatitis, cardiovascular diseases, and hyperlipidemia. However, despite the recent exciting progress in the understanding how bariatric surgery works, the underlying molecular mechanisms of bariatric surgery remain largely unknown. Interestingly, bile acids are emerging as potential signaling molecules to mediate the beneficial effects of bariatric surgery. In this review, we summarize the recent findings on bile acids and their activated receptors in mediating the beneficial metabolic effects of bariatric surgery. We also discuss the potential to target bile acid-activated receptors in order to treat obesity and other metabolic diseases.


Assuntos
Cirurgia Bariátrica , Ácidos e Sais Biliares , Derivação Gástrica , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Diabetes Mellitus Tipo 2 , Humanos , Redução de Peso
12.
Exp Mol Med ; 49(10): e387, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29075038

RESUMO

Impaired angiogenesis is one of the crucial factors that impede the wound healing process in diabetic foot ulcers (DFUs). In this study, we found that 20(S)-protopanaxadiol (PPD), an aglycone of ginsenosides in Panax notoginseng, stimulated angiogenesis and benefited wound healing in genetically diabetic mice. In HUVECs, PPD promoted cell proliferation, tube formation and VEGF secretion accompanied by increased nuclear translocalization of HIF-1α, which led to elevated VEGF mRNA expression. PPD activated both PI3K/Akt/mTOR and Raf/MEK/ERK signaling pathways in HUVECs, which were abrogated by LY294002 and PD98059. Furthermore, these two pathways had crosstalk through p70S6K, as LY294002, PD98059 and p70S6K siRNA abolished the angiogenic responses of PPD. In the excisional wound splinting model established in db/db diabetic mice, PPD (0.6, 6 and 60 mg ml-1) accelerated wound closure, which was reflected by a significantly reduced wound area and epithelial gaps, as well as elevated VEGF expression and capillary formation. In addition, PPD activated PI3K/Akt/ERK signaling pathways, as well as enhanced p70S6K activity and HIF-1α synthesis in the wounds. Overall, our results revealed that PPD stimulated angiogenesis via HIF-1α-mediated VEGF expression by activating p70S6K through PI3K/Akt/mTOR and Raf/MEK/ERK signaling cascades, which suggests that the compound has potential use in wound healing therapy in patients suffering from DFUs.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sapogeninas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
13.
Oncol Rep ; 38(1): 359-367, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28534996

RESUMO

Blockade of angiogenesis is an important approach for cancer treatment and prevention. In the present study, we investigated the effect of ginsenoside Rd (Rd) on angiogenesis in vitro and in vivo. Our results demonstrated that Rd inhibited vascular endothelial growth factor (VEGF)-induced migration, tube formation and proliferation of primary cultured human umbilical vascular endothelial cells (HUVECs) dose­dependently. Furthermore, Rd abrogated VEGF-induced sprouting of the vessels from aortic rings, and inhibited vascular formation in the Matrigel plug assay in vivo. Under normoxic or hypoxic conditions, Rd suppressed VEGF­induced activation of Akt/mammalian target of rapamycin (mTOR) signaling transduction cascades in HUVECs. When intraperitoneally administered to mice bearing human breast cancer (MDA­MB-231) cell xenografts, Rd significantly decreased the volume and the weight of solid tumors in a dose-dependent manner, and decreased tumor angiogenesis as less Ki67- and CD31-positive cells were found. Additionally, we found that Rd inhibited proliferation and induced apoptosis as well as the inhibition of Akt/mTOR/P70S6 kinase signaling in breast cancer cells. Collectively, our findings revealed that Rd may be a promising anti-angiogenic drug with significant antitumor activity in human breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ginsenosídeos/farmacologia , Neovascularização Patológica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Liver Res ; 1(4): 208-213, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30034914

RESUMO

The rapid worldwide rise in obesity rates over the past few decades imposes an urgent need to develop effective strategies for treating obesity and associated metabolic complications. Bariatric surgical procedures, such as Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), currently provide the most effective treatment for obesity and type 2 diabetes (T2D), as well as for non-alcoholic steatohepatitis (NASH). However, the underlying mechanisms of the beneficial effects of bariatric surgery remain elusive. Recent studies have identified bile acids as potential signaling molecules involved in the beneficial effects of bariatric surgery. This review focuses on the most recent studies on the roles of bile acids and bile acid receptors Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 5 (TGR5) in bariatric surgery. We also discuss the possibility of modulating bile acid signaling as a pharmacological therapeutic approach to treating obesity and its associated metabolic complications.

15.
J Pharmacol Exp Ther ; 356(2): 324-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26567319

RESUMO

Wound healing requires the essential participation of fibroblasts, which is impaired in diabetic foot ulcers (DFU). Notoginsenoside Ft1 (Ft1), a saponin from Panax notoginseng, can enhance platelet aggregation by activating signaling network mediated through P2Y12 and induce proliferation, migration, and tube formation in cultured human umbilical vein endothelial cells. However, whether it can accelerate fibroblast proliferation and benefit wound healing, especially DFU, has not been elucidated. In the present study on human dermal fibroblast HDF-a, Ft1 increased cell proliferation and collagen production via PI3K/Akt/mTOR signaling pathway. On the excisional wound splinting model established on db/db diabetic mouse, topical application of Ft1 significantly shortened the wound closure time by 5.1 days in contrast with phosphate-buffered saline (PBS) treatment (15.8 versus 20.9 days). Meanwhile, Ft1 increased the rate of re-epithelialization and the amount of granulation tissue at day 7 and day 14. The molecule also enhanced mRNA expressions of COL1A1, COL3A1, transforming growth factor (TGF)-ß1 and TGF-ß3 and fibronectin, the genes that contributed to collagen expression, fibroblast proliferation, and consequent scar formation. Moreover, Ft1 facilitated the neovascularization accompanied with elevated vascular endothelial growth factor, platelet-derived growth factor, and fibroblast growth factor at either mRNA or protein levels and alleviated the inflammation of infiltrated monocytes indicated by reduced tumor necrosis factor-α and interleukin-6 mRNA expressions in the diabetic wounds. Altogether, these results indicated that Ft1 might accelerate diabetic wound healing by orchestrating multiple processes, including promoting fibroblast proliferation, enhancing angiogenesis, and attenuating inflammatory response, which provided a great potential application of it in clinics for patients with DFU.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Diabetes Mellitus Experimental/tratamento farmacológico , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Cicatrização/fisiologia
16.
Am J Physiol Gastrointest Liver Physiol ; 306(1): G27-36, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24232001

RESUMO

Paeonia lactiflora Pall is one of the most well-known herbs in China, Korea, and Japan for more than 1,200 years. Paeoniflorin, the major bioactive component of peony root, has recently been reported to have anticolitic activity. However, the underlying molecular mechanism is unclear. The present study was to explore the possible mechanism of paeoniflorin in attenuating dextran sulfate sodium (DSS)-induced colitis. Pre- and coadministration of paeoniflorin significantly reduced the severity of colitis and resulted in downregulation of several inflammatory parameters in the colon, including the activity of myeloperoxidase (MPO), the levels of TNF-α and IL-6, and the mRNA expression of proinflammatory mediators (MCP-1, Cox2, IFN-γ, TNF-α, IL-6, and IL-17). The decline in the activation of NF-κB p65, ERK, JNK, and p38 MAPK correlated with a decrease in mucosal Toll-like receptor 4 (TLR4) but not TLR2 or TLR5 expression. In accordance with the in vivo results, paeoniflorin downregulated TLR4 expression, blocked nuclear translocation of NF-κB p65, and reduced the production of IL-6 in LPS-stimulated mouse macrophage RAW264.7 cells. Transient transfection assay performed in LPS-stimulated human colon cancer HT-29 cells indicated that paeoniflorin inhibits NF-κB transcriptional activity in a dose-dependent manner. TLR4 knockdown and overexpression experiments demonstrated a requirement for TLR4 in paeoniflorin-mediated downregulation of inflammatory cytokines. Thus, for the first time, the present study indicates that paeoniflorin abrogates DSS-induced colitis via decreasing the expression of TLR4 and suppressing the activation of NF-κB and MAPK pathways.


Assuntos
Benzoatos/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Colite , Glucosídeos/uso terapêutico , Inflamação/metabolismo , Paeonia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Disponibilidade Biológica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/fisiopatologia , Sulfato de Dextrana/farmacologia , Medicamentos de Ervas Chinesas , Perfilação da Expressão Gênica , Células HT29 , Humanos , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Animais , Monoterpenos , NF-kappa B/metabolismo , Peroxidase/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
17.
J Pharmacol Exp Ther ; 345(3): 473-82, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536316

RESUMO

Targeted activation of pregnane X receptor (PXR) in recent years has become a therapeutic strategy for inflammatory bowel disease. Chrysin is a naturally occurring flavonoid with anti-inflammation activity. The current study investigated the role of chrysin as a putative mouse PXR agonist in preventing experimental colitis. Pre-administration of chrysin ameliorated inflammatory symptoms in mouse models of colitis (dextran sodium sulfate- and 2,4,6-trinitrobenzene sulfonic acid-induced) and resulted in down-regulation of nuclear transcription factor κB (NF-κB) target genes (inducible NO synthase, intercellular adhesion molecule-1, monocyte chemotactic protein-1, cyclooxygenase 2, tumor necrosis factor-α, and interleukin 6) in the colon mucosa. Chrysin inhibited the phosphorylation/degradation of inhibitor κBα (IκBα), which correlated with the decrease in the activity of myeloperoxidase and the levels of tumor necrosis factor-α and interleukin 6 in the colon. Consistent with the in vivo results, chrysin blocked lipopolysaccharide -stimulated nuclear translocation of NF-κB p65 in mouse macrophage RAW264.7. Furthermore, chrysin dose-dependently activated human/mouse PXR in reporter gene assays and up-regulated xenobiotic detoxification genes in the colon mucosa, but not in the liver. Silencing of PXR by RNA interference demonstrated necessity of PXR in mediating chrysin's ability to induce xenobiotic detoxification genes and NF-κB inactivation. The repression of NF-κB transcription activity by chrysin was confirmed by in vitro PXR transduction. These findings suggest that the effect of chrysin in preventing chemically induced colitis is mediated in large part by a PXR/NF-κB pathway. The data also suggest that chrysin or chrysin-like flavonoids could be further developed as intestine-specific PXR activators.


Assuntos
Colite/tratamento farmacológico , Flavonoides/farmacologia , NF-kappa B/efeitos dos fármacos , Receptores de Esteroides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Feminino , Imunofluorescência , Inativação Gênica/efeitos dos fármacos , Inativação Gênica/fisiologia , Genes Reporter/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , Peroxidase/metabolismo , Receptor de Pregnano X , RNA/biossíntese , RNA/isolamento & purificação , Receptores de Esteroides/antagonistas & inibidores , Ácido Trinitrobenzenossulfônico , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Br J Nutr ; 110(4): 599-608, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23506745

RESUMO

Naringenin, one of the most abundant flavonoids in citrus, grapefruits and tomatoes, has been used as a traditional anti-inflammatory agent for centuries. However, the molecular mechanism of naringenin in intestinal inflammation remains unknown so far. The present study investigated a molecular basis for the protective effect of naringenin in dextran sulphate sodium-induced murine colitis. Pre-administration of naringenin significantly reduced the severity of colitis and resulted in down-regulation of pro-inflammatory mediators (inducible NO synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), cyclo-oxygenase-2 (Cox2), TNF-α and IL-6 mRNA) in the colon mucosa. The decline in the production of pro-inflammatory cytokines, specifically TNF-α and IL-6, correlated with a decrease in mucosal Toll-like receptor 4 (TLR4) mRNA and protein. Phospho-NF-κB p65 protein was significantly decreased, which correlated with a similar decrease in phospho-IκBα protein. Consistent with the in vivo results, naringenin exposure blocked lipopolysaccharide-stimulated nuclear translocation of NF-κB p65 in mouse macrophage RAW264.7 cells. In addition, in vitro NF-κB reporter assays performed on human colonic HT-29 cells exposed to naringenin demonstrated a significant inhibition of TNF-α-induced NF-κB luciferase expression. Thus, for the first time, the present study indicates that targeted inhibition of the TLR4/NF-κB signalling pathway might be an important mechanism for naringenin in abrogating experimental colitis.


Assuntos
Colite/induzido quimicamente , Colite/prevenção & controle , Flavanonas/farmacologia , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Suplementos Nutricionais , Feminino , Flavonoides/farmacologia , Inflamação , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
19.
Adv Mater ; 24(13): 1693-6, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22388988

RESUMO

Zinc antimonide thin films with high thermoelectric performance are produced by a simple sputtering method. The phase-pure Zn(4)Sb(3) and ZnSb thin films fulfill the key requirements for commercial TE power generation: cheap elements, cheap fabrication method, high performance and thermal stability. In addition, two completely new meta-stable crystalline phases of zinc antimonide have been discovered.


Assuntos
Antimônio/química , Fontes de Energia Elétrica , Zinco/química , Cristalização , Fontes de Energia Elétrica/economia , Eletricidade , Temperatura
20.
Bioconjug Chem ; 19(3): 651-5, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18254583

RESUMO

Water-soluble gadofullerides exhibited high efficiency as magnetic resonance imaging (MRI) contrast agents. In this paper, we report the conjugation of the newly synthesized gadofulleride, Gd@C82O6(OH) 16(-)(NHCH2CH2COOH)8, with the antibody of green fluorescence protein (anti-GFP), as a model for "tumor targeted" imaging agents based on endohedral metallofullerenes. In this model system, the activity of the anti-GFP conjugate can be conveniently detected by green fluorescence protein (GFP), leading to in vitro experiments more direct and facile than those of tumor antibodies. Objective-type total internal reflection fluorescence microscopy revealed that each gadofulleride aggregate conjugated on average five anti-GFPs, and the activity of anti-GFPs was preserved after conjugation. In addition, the gadofulleride/antibody conjugate exhibited higher water proton relaxivity (12.0 mM (-1) s (-1)) than the parent gadofulleride aggregate (8.1 mM (-1) s (-1)) in phosphate buffered saline at 0.35 T, as also confirmed by T1-weighted images of phantoms. These observations clearly indicate that the synthesized gadofulleride/antibody conjugate not only has targeting potential, but also exhibits higher efficiency as an MRI contrast agent.


Assuntos
Anticorpos/química , Meios de Contraste/síntese química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Biotina/química , Fenômenos Químicos , Físico-Química , Proteínas de Fluorescência Verde/imunologia , Indicadores e Reagentes , Conformação Molecular , Peso Molecular , Soroalbumina Bovina/química , Solubilidade , Espectrometria de Fluorescência , Estreptavidina/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...